- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0001000002000000
- More
- Availability
-
03
- Author / Contributor
- Filter by Author / Creator
-
-
Wu, Wen (3)
-
Savino, Benjamin S (2)
-
Cooper, Benjamin K (1)
-
Cooper, John M (1)
-
Savino, Benjamin (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Direct numerical simulation is performed for flow separation over a bump in a turbulent channel. Comparisons are made between a smooth bump and one where the lee side is covered with replicas of shark denticles – dermal scales that consist of a slender base (the neck) and a wide top (the crown). As flow over the bump is under an adverse pressure gradient (APG), a reverse pore flow is formed in the porous cavity region underneath the crowns of the denticle array. Remarkable thrust is generated by the reverse pore flow as denticle necks accelerate the fluid passing between them in the upstream direction. Several geometrical features of shark denticles, including some that had not previously been considered hydrodynamically functional, are identified to form the two-layer denticle structure that enables and sustains the reverse pore flow and thrust generation. The reverse pore flow is activated by the APG before massive flow detachment. The results indicate a proactive, on-demand drag reduction mechanism that leverages and transforms the APG into a favourable outcome.more » « lessFree, publicly-accessible full text available December 10, 2025
-
Savino, Benjamin S; Wu, Wen (, Journal of Fluid Mechanics)Direct numerical simulations of spanwise-rotating turbulent channel flow with a parabolic bump on the bottom wall are employed to investigate the effects of rotation on flow separation. Four rotation rates,$$Ro_b := 2\varOmega H/U_b = \pm 0.42$$,$$\pm$$1.0, are compared with the non-rotating scenario. The mild adverse pressure gradient induced by the lee side of the bump allows for a variable pressure-induced separation. The separation region is reduced (increased) when the bump is on the anti-cyclonic (cyclonic) side of the channel, compared with the non-rotating separation. The total drag is reduced in all rotating cases. Through several mechanisms, rotation alters the onset of separation, reattachment and wake recovery. The mean momentum deficit is found to be the key. A physical interpretation of the ratio between the system rotation and mean shear vorticity,$$S:=\varOmega /\varOmega _s$$, provides the mechanisms regarding stability thresholds$$S=-0.5$$and$$-$$1. The rotation effects are explained accordingly, with reference to the dynamics of several flow structures. For anti-cyclonic separation, particularly, the interaction between the Taylor–Görtler vortices and hairpin vortices of wall-bounded turbulence is proven to be responsible for the breakdown of the separating shear layer. A generalized argument is made regarding the essential role of near-wall deceleration and resultant ejection of enhanced hairpin vortices in destabilizing an anti-cyclonic flow. This mechanism is anticipated to have broad impacts on other applications in analogy to rotating shear flows, such as thermal convection and boundary layers over concave walls.more » « lessFree, publicly-accessible full text available November 25, 2025
-
Cooper, John M; Savino, Benjamin; Cooper, Benjamin K; Wu, Wen (, American Institute of Aeronautics and Astronautics)Free, publicly-accessible full text available January 3, 2026
An official website of the United States government
